right-icon

Back to blog

Research Highlights Echelon Biosciences - formation of cellular condensates may permit unique lipid biology

Phase-separated condensates may be microdomains for unique lipid biology

The concept of biological, intracellular phase separation has existed for some time. However, until recently direct evidence for t...

2 minute read
By Cameron Day
November 27

The concept of biological, intracellular phase separation has existed for some time. However, until recently direct evidence for this phenomenon was limited, largely due to technical constraints. As imaging techniques have advanced, it has become easier to observe and manipulate phase-separated compartments within the cell, although there is still much to be determined regarding their functions.

The current study from Dumelie and colleagues discusses the presence and content of non-membranous organelles, called biomolecular condensates, within cells. These condensates, such as nucleoli, nuclear speckles, and stress granules, phase separate from the nucleoplasm or cytoplasm and generally form through weak interactions between proteins and RNA. Surprisingly, there is also evidence that metabolic enzymes, particularly those involved in phospholipid metabolism, are found in these condensates. This suggests that these condensates may contain phospholipid substrates that traditionally reside in the plasma membrane or membranes of other cellular organelles.

Echelon Biosciences - example locations of putative biomolecular condensates in cells

Figure 1: Putative phase-separated condensates and their location inside the cell. Current evidence points towards some subcelluar organelles such as stress granules, nuclear speckles, and P-bodies as biomolecular condensates with specific metabolite pools.

Here, the researchers hypothesized that intracellular metabolites, including phospholipids, may be selectively enriched in condensates. Experimental findings using untargeted metabolomic analysis support this notion, revealing condensate-specific metabolomes. Phospholipids appeared to exhibit preferential partitioning into condensates, which seems partially driven by the hydrophobic properties of their regions. The authors suggest that the chemical environment of the condensates may be favorable to lipid solvation and partitioning, however they do not rule out other mechanisms for localization of lipids to these environments, such as lipid binding proteins. The current findings also have implications for approaches to drug development as several well-known lipid modifying enzymes, such as PI3K, are disease associated and produce phospholipids found in these condensates. In total, the study provides evidence that phosphoinositides enter biomolecular condensates through phase separation providing a novel microenvironment for lipid signaling and metabolism.

Read the full article here:

Biomolecular condensates create phospholipid-enriched microenvironments

Nature Chemical Biology (2023)

0.2

/ 0.3

Related Articles

Stay informed with our informative blog posts.

Research Highlights
Echelon Bioscience - lipid-dependent activation of STING

Lipid-dependent activation of the STING pathway

The cGAS/STING pathway is a critical part of the innate immune system that detects cytosolic DNA and promotes inflammatory respons

2 minute read
By Cameron Day
March 22

Research Highlights
Dissecting microglia to identify new targets in Alzheimer's disease (INPP5D) - Echelon Biosciences

Lipid phosphatase INPP5D emerges as key regulator of inflammasome in microglia

Alzheimer’s disease (AD) has long been characterized by the presence of plaques in neuronal tissue composed primarily of amyloid

3 minute read
By Cameron Day
January 9

Research Highlights
Echelon Biosciences - formation of cellular condensates may permit unique lipid biology

Phase-separated condensates may be microdomains for unique lipid biology

The concept of biological, intracellular phase separation has existed for some time. However, until recently direct evidence for t

2 minute read
By Cameron Day
November 27

Research Highlights
Echelon Biosciences - A phosphatidylinositol kinase could be a new target for autoimmune therapy

A phosphatidylinositol kinase could be a new target for autoimmune therapy

Interleukin-17 (IL-17) is a cytokine produced by a specific type of T cell and is involved in restricting invasive microbes. Despi

2 minute read
By Cameron Day
November 3

Research Highlights
Echelon Biosciences - new evidence shows connection between Synaptotagmin and PIP2 for membrane traffic

Exo-endocytic coupling in neurons is dependent on lipid signaling

Communication between neurons in the brain, neurotransmission, is dependent on the release of small molecules from specialized str

2 minute read
By Cameron Day
October 9

Research Highlights
Echelon Biosciences - CLN5 identified as synthase of disease-associated lipid BMP

Disease-associated protein CLN5 is identified as the long-sought BMP synthase

Bis(monoacylglycero)phosphate (BMP), also known as LBPA, is necessary for lysosomal function and alterations in BMP levels have be

2 minute read
By Cameron Day
September 30

0.3

/ 0.3

Get in Touch

If you have any questions or would like to learn more about our services, feel free to reach out to us. We’re here to help!

Contact Echelon
Biosciences
Basket

Your Echelon Basket is empty.