Phospholipid Substrates for Lysosomal Phospholipase A2 (LPLA2)

Fok Vun Chan¹, James A. Shayman², Paul O. Neilsen³, L. Jeff Johnson⁴

¹Echelon Biosciences, Inc. Salt Lake City, Utah, United States
²Internal Medicine – Nephrology, University of Michigan, Ann Arbor, MI, United States

1. OVERVIEW

- Lysosomal phospholipase A2 (LPLA2) is involved in both drug-induced phospholipidosis (DIPL) & drug-induced lupus (DIL)
- Evaluated phospholipid charge & structure in relation to LPLA2 activity
- Studied plasma LPLA2 substrate profile using a self-quenched fluorogenic probe specifically designed for LPLA2 in acidic environment

2. LYSOSOMAL PHOSPHOLIPASE A2 (LPLA2)

- LPLA2:
 - Located in lysosome with optimal pH at 4.5
 - Has both PLA1 and PLA2 activity
 - Also has transacylase activity when an acceptor, such as IV-acyl-lipid, is present
- Detection method:
 - A self-quenched fluorogenic probe is synthesized specifically for PLA2 activity
 - The self-quenched fluorogenic probe is incorporated into liposomes and used as a substrate for LPLA2
 - Reaction is performed under acidic condition

3. LPLA2 & DISEASE

- Drug-induced phospholipidosis (DIPL)
 - Condition of excessive accumulation of intracellular phospholipids caused by common cationic amphiphilic drugs (CADs) on the market
 - CADs significantly inhibit LPLA2 activity in vitro
- Drug-induced lupus (DIL)
 - Systemic autoimmune disease when immune system attacks own tissues and organs
 - 5-15% lupus is triggered by long-term drug use
 - LPLA2 KO mice express phenotypes similar to lupus

4. LPLA2 ACTIVITY & MEMBRANE PROPERTIES

- The self-quenched fluorogenic probe incorporated into negative charged phospholipids such as DOPG & DOPE results in significantly higher LPLA2 activity
- No significant LPLA2 activity when the self-quenched fluorogenic probe incorporated into neutral phospholipids such as DOPC & DOPE
- The self-quenched fluorogenic probe also shows strong LPLA2 activity when incorporated in the bi(monomono)glycerophosphate (BMP), a special late endosome lipid
- The highly negatively charged lipid, suitable, significantly enhances the LPLA2 activity towards the self-quenched fluorogenic probe incorporated into neutral phospholipids such as DOPE

5. LPLA2 sn-1 PHOSPHOLIPASE ACTIVITY

- Substrate (PGP-BOC-DPY) incorporated in DOPE-C5 depletion observed in both recombinant human LPLA2 and mouse plasma
- Human recombinant LPLA2 cleaves only at the sn-1 position on truncated & oxidized phospholipid fluorescent probe
- Unknown product (possibly by PLA1) detected when the self-quenched fluorogenic probe is incorporated in negatively charged phospholipids (DOPG)

6. CONCLUSIONS & ACKNOWLEDGEMENTS

- CAD interfering with LPLA2 activity is a promising mechanism for DIPL
- Membrane charge & structure are critical for LPLA2 substrate engagement
- Mouse WT and KO plasma LPLA2 activity presents different substrate profile

We appreciate Dr. James M Willard from FDA in sharing the Phospholipidosis Working Group database
We thank our collaborators Dr. Piotr W. Rzepocki for advice
This study is supported by FDA, SBIR Contract, 5R44FD004052

Presenter Contact Information:
Fok Vun Chan
schang@echelon-inc.com
(801) 588-0455 ext. 378